Obyektlarni sinflashtirishda xatoliklarni minimallashtirishga asoslangan baholarni hisoblash algoritmlari
Referat
Ushbu tadqiqotda real obyektlar va sintetik ortirilgan sinflarning taqsimoti tahlil qilinib, ularning mashinaviy o‘rganish modellariga ta’siri baholandi. Logistik regressiya, qaror daraxtlari, tasodifiy o‘rmon va SVM modellarida sintetik ma’lumotlar bilan o‘qitish natijalari real obyektlar dataset bilan solishtirildi. Eksperimental natijalar shuni ko‘rsatdiki, sintetik ortirilgan obyektlar ma’lumotlardan foydalanish klassifikatsiya modelining aniqligini oshirishga yordam beradi, ayniqsa algoritmlarning modellarida sezilarli yaxshilanish kuzatildi.
Mualliflar haqida
Adabiyotlar ro'yxati
He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems (NeurIPS).
Fernández, A., García, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges. Journal of Artificial Intelligence Review.
Liu, B., Ding, H., & Wang, Y. (2020). Synthetic Data Augmentation for Medical Diagnosis. IEEE Transactions on Biomedical Engineering.
Smith, J. (2020). Medical Classification Systems. Journal of AI in Medicine.
Brown, R. (2019). Heuristic Algorithms in Diagnosis. Medical Informatics Review.
Nishanov, A., Ruzibaev, O., & Tran, N. (2016). Modification of decision rules “ball Apolonia” for the problem of classification. 2016 International Conference on Information Science and Communications Technologies (ICISCT). https://doi.org/10.1109/ICISCT.2016.7777382
Nishanov, A., Saidrasulov, Sh., & Babadjanov, E. (2022). Analysis of Methodology of Rating Evaluation of Digital Economy and E-Government Development in Uzbekistan. International Journal of Early Childhood Special Education, 14(2), 2447–2452. https://doi.org/10.9756/INT-JECSE/V14I2.230
Nishanov, A., Ruzibaev, O., Chedjou, J. C., Kyamakya, K., Abhiram, K., De Silva, Djurayev, G., & Khasanova, M. (2020). Algorithm for the Selection of Informative Symptoms in the Classification of Medical Data. Developments of Artificial Intelligence Technologies in Computation and Robotics, 12, 647–658. https://doi.org/10.1142/9789811223334_0078
Nishanov, A. Kh., Turakulov, A. Kh., & Turakhanov, Kh. V. (1999). Reshaiushchee pravilo dlia klassifikatsii patologii zritel'noĭ sistemy [A Decisive Rule in Classifying Diseases of the Visual System]. Med Tekh, (4), 16–18. [In Russian]. PMID: 10464756.
Nishanov, A., Akbarova, M., Tursunov, A., Ollamberganov, F., & Rashidova, D. (2024). Clustering Algorithm Based on Object Similarity. Journal of Mathematics, Mechanics and Computer Science / Computer Science, 123(3), 108–120. https://doi.org/10.26577/JMMCS2024-v123-i3-4